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A semi-implicit orbit-averaged time-integration algorithm has been
successfully implemented in a gyrokinetic particle simulation codeg for
the study of self-consistent phenomena in a strongly magnetized
plasma. The semi-implicit aspect of the integration scheme relaxes the
timestep constraints required to ensure numerical stability. The orbit
averaging is useful in reducing statistical noise and relaxes the statisti-
cal constraints for kinetic simutation. For appropriate applications, the
somi-implicit orhit-averaged algorithm should ba more efficient than
are traditional particie-in-cell plasma simulation algorithms with
explicit time-integration schemes. Both a linear numerical dispersion
analysis and illustrative simulation examples are presented. © 1993
Academic Prass, Inc.

I. INTRODUCTION

Kinetic phenomena in laboratory and space plasmas
span many orders of magnitude making direct numerical
solution of the fundamental equations computationally
intensive (if not hopeless} in many circumstances [ 1]. This
paper presents first results from the implementation of a
semi-implicit orbit-averaged particle simulation algorithm
that addresses the disparate timescale problem in the
simulation of kinetic plasma phenomena. This study con-
tinues our earlier work [27 in which model aigorithms and
lincar numerical dispersion analyses were presented that
introduced both semi-implicit and semi-implicit orbit-
averaged algorithms for self-consistent particle simulation
of plasmas. Here we report our experience implementing a
semi-implicit orbit-averaged time-integration scheme in an
clectrostatic gyrokinctic particle simulation algorithm with
kinctic electrons and ions [3]. We have determined that
maodifications to the basic algorithm presented in [27 are
required to suppress a slowly growing numerical error.
A linear dispersion analysis of the revised algorithm and
results from a few illustrative simulation examples are
presented. The analysis and examples demonstrate that the
semi-implicit orbit-averaged algorithm relaxes constraints
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on both the timestep required for stability of the highest
frequency waves in the model and the statistical resolution.
The combination of implicit time integration and orbit
averaging leads to a more efficient self-consistent particle
code for appropriate physics applications. However, the
improvement in efficiency is sensitive to the detaiis of the .
specific physics application.

The motivation for this work, that reporied in {27, and
the carlicr work on direct implicit particle simulation [4]
and orbit averaging (5, 6] is the desire to study time-
dependent, collective kinetic phenomena in a plasma having
a wide range of time scales so that the computational
problem is quite stiff [1]. The class of phenomena moti-
vating our specific choice of a gyrokinetic particle code as a
testbed for a semi-implicit orbit-averaged time-integration
scheme is low-frequency micreturbulence in magnetically
confined plasmas, e.g., drifi-wave instabilities.

The gyrokinetic algorithm analytically removes the
cyclotron timescale by a formal time averaging [37, while
retaining the effects of the finite Larmor radius on the inter-
action of the particles with the self-consistent fields for
frequencies much less than the cyclotron frequency. This
assumption is compatible with a large class of drift-wave
instabilities and low-frequency magnetohydrodynamic
(MHD) and resistive modes that are believed to contribute
significantly to the turbulent transport of encrgy and par-
ticles observed in tokamak experiments. Even with the use
of the gyrokinetic formalism, the kinetic simulation of drift-
wave instabilities in tokamaks remains a stiff problem. The
timescales of electrons transiting across a drift wave follow-
ing the equilibrium magnelic ficld fines are many orders of
magnitude shorter than the periods of the drift waves
producing transport. Furthermore, an explicit time integra-
tion of the electrostatic equations with kinetic electrons is
subject to 2 timestep constraint set by the highest frequency
normal mode, w, At < 1, where w,, = (k /k, ¥m,/m )2 Q,,
£2;=eBy/m,c is the ion cyclotron frequency, m,/m, is the
mass ratio, and k,/k, is the ratio of the parallel and per-
pendicular wavenumbers with respect to the equilibrium
magnetic ficld; w, is typically much larger than the drifi-
wave frequencies. As explained in [2], the semi-implicit
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orbit-averaged algorithm sceks to relax the timestep
constraint set by w; and reduce the statistical constraint on
the electrons without forfeiting an accurate calculation of
their trajectories.

The paper is organized as follows: In Section2 we
describe our implementation of the semi-implicit orbit-
averaged gyrokinetic algorithm introduced in [2]. The
linear dispersion analysis of this integration scheme in {2]
indicated that exponentially growing modes can be
stabilized at large timestep. However, trial simulations
reveal numerically unstable zero-frequency modes that
grow algebraically in time. A variant of this algorithm is
then introduced, and a linear dispersion analysis shows that
the stability boundary for exponentially growing modes is
extended to a timestep that is significantly larger than the
maximal stable timestep for the explicit time-integration
scheme used in [3]. The effects of spatial filtering and inter-
polation onto a spatial grid modify the linear dispersion
analysis. Simulation results for a few test cases using the
revised algorithm are presented in Section 3. A simulation of
an ion-temperature-gradient instability [ 7] is used as a con-
venient test problem with which to compare the simulation
results of our algorithm and those from an explicit integra-
tion scheme. These results are in substantial agreement with
those published in [7] for small timestep. In this example,
finite-amplitude effects limit how large a timestep may be
used and limit the usefulness and applicabiiity of orbit
averaging. Nevertheless, it is demonstrated that orbit
averaging can lead to a substantial reduction of the number
of particles. Additional simulations for a stable plasma are
reported that illustrate the stability properties of the revised
semi-implicit orbit-averaged algorithm and demonstrate
both its noise-reduction characteristics and improved com-
putational efficiency. Some concluding remarks are given in
Section 4. The Appendix takes up a short discussion of how
the algorithm can incorporate magnetic shear.

2. SEMI-IMPLICIT ORBIT-AVERAGED
ALGORITHMS

In this section we shall begin by reviewing the algorithm
introduced in [2] and describing both the results of a linear
stability analysis and the failure of this algorithm because of
a zero-frequency error that grows linearly in time. A revised
algorithm is introduced that is designed to remove the
secularly growing error, A linear dispersion analysis for the
highest-frequency, cold-plastma normal meode is then
presented. Some comments on how spatial grid effects and
spatial filtering alter the linear dispersion relation are also
given here.

2.1. First Algorithm

The first semi-implicit orbit-averaged algorithm was
introduced in [2] for gyrokinetic simulation. The electrons
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were modeled as a drift-kinetic species (zero-Larmor
radius), while Larmor radius effects were retained in the
gyrokinetic limit for the ions. Equations (17}(21) in [2]
describe the scheme in detail. The basic algorithm is com-
posed of the following elements. In an electrostatic model,
the electrons are advanced with a small timestep 4z, from
N At,to (N+ 1) 4¢; using the electric field Ey = ~Vg ina
static magnetic ficld. The electron charge and current
densities #° and J° are accumulated on the spatial grid at
each timestep from the particle data {x°, v*} and then time-
averaged to form (»*> and {J),, .. The ion gyro-
centers are then advanced in a predictor step from N At; to
(N + 1) 4¢, using the appropriately gyro-averaged electric
field [3]. A predicted gyro-averaged ion number density #°
is coliected from the ion positions {X, ,} displaced by
their Larmor radii. The self-consistent electric potential
$., 1 is determined by the solution of the semi-implicit
gyrokinetic Poisson equation,

V2 9; 2 Iy
- +nglg (Dns1—9n)

= 41te(ﬁjv+1 —ﬂ;v)—47f AI‘-V . <Je>N+ 172

+ CoV L@k 47V (et = $4)], (1)

where @7, = dn(e*/m (") i1 & dmngem,, w;,,-
dnnge’/m;, g=b""[1— I exp(—b)] in k space, b =k? p2,
p,=(T,/m)"*/Q, is the ion thermal Larmor radius, Q,
is the ion cyclotron frequency, and C, is a control
parameter for the implicitness. Recali that the gyrokinetic
ordering [2, 3] assumes that the density perturbations
considered, although finite, are small in amplitude, and the
inhomogeneities of the unperturbed plasma are weak. In
consequence, the plasma parameters appearing in the ion
polarization and the semi-implicit electron susceptibility are
homogeneous and constant. The ions are then advanced in
a corrector step from N Az, to (N+1) 4t, using E, | =
—V@y,, and E,. The corrected value of iy, ., is then
calculated and used in Eq. (1) to obtain ¢, ,. The timestep
advance to (N+ 1) 4t, is completed by using an electric
fieldE=E,+2Cy(E,,, —E,), whereE,, ,=—Vg,,, to
correct the advance of the electrons from N4t to
(N+1) 4z,

A linear stability analysis was performed in [2] to obtain
the model dispersion relation in the limit of a cold, non-
drifting plasma and with spatial grid and interpolation
effects neglected,

(1+ Comw; AtH(A—1)?

+of A (2C+ 1/2YA-1)+1]=0, (2)

where A=exp(—iw 41), ;= (k}/ki)m;/m,)Q}, and
ki <k’ . The parallel and perpendicular subscripts indicate
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FIG. 1. The modulus of the amplification factor 4| as a function of
w? Ae? for C,=0.02, 0.5, 1.0 in the first algorithm.

the orientation of the wavenumber components relative to
the magnetic field. For C; > 3, there are damped solutions
(1Al <1) of Eq.(2): for wldZ» 1, A={1-1/(2Cy),
—1+0(1/w? 4¢3)}; for w3} At; <1 there are damped
solutions with Re(w)= +w,. In Fig. 1 we plot the modulus
of the amplification factor for the two roots of Eq. (2).
Thus, for Cy>1 there are no exponentially growing
modes. However, perturbations growing with a power-law
dependence on time are not excluded.

In our unsuccessful attempts to implement this algorithm,
we discovered several difficulties. The first difficulty was that
Eq. (1) treats the ion and electron source terms in Eq. (1) on
an unequal footing. The electron current was accumulated
and then its divergence calculated on the grid, while an ion
charge density was calculated directly. To put the electrons
and ions on a more equal footing with respect to finite-
differencing, which might be important in resolving smail
deviations from quasi-neutrality, we made the replacement
dne(a’y, , —A%)= —4n AtV -J',  in Eq. (1), where J, |
is the gyro-averaged ion current density at (N +1) 4¢, on
the ion predictor step and is determined from {X, ¥}, .
On the ion corrector step, J%,, was accumulated from
{x, v}'y, . This modification leaves the dispersion relation
derived in Eq. (2) unchanged. However, a second difficulty
remains and manifests itself in zero-frequency errors in the
potential and perturbed plasma displacements that grow
approximately linearly in time (Fig. 2). Although we were
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FIG. 2. The real and imaginary parts of the (%, k,)= (3, 3) Fourier
component of eg/T, as a function of time.
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able to verify the algorithm’s stability properties with
respect to exponentially growing modes for large values of
w? At? when C, > 4, or instability when C,, < §, the presence
of the secularly growing error frustrated successful simula-
tion of physical instabilities like the ion-temperature-
gradient (ITG) mode [7]. We believe that the secularly
growing errors derive from grid errors and statistical effects
in the ion and electron source terms on the right side of
Eq. (1) that linearly accrue in ¢ at each timestep on account
of the time integration of Eq. (1). In k space, Eq. (1) has the
form ¢y, , =¢n+ L, S, where L, is a linear operator and
S, is a source. By replacing Eq. (1), with a semi-implicit
Poisson equation that uses the ion charge density and the
orbit-averaged electron charge density, we were able to
remove the secularly growing error.

2.2. Revised Algorithm

We have revised our semi-implicit orbit-averaged algo-
rithm to remove the secularly growing errors as follows. The
interleaving of the ion and electron advances is diagrammed
in Fig. 3. The electrons are advanced in a predictor step
from (N +1/2) At, to (N + 3/2) 4r, using a small timestep
At, and the electric field E,. The orbit-averaged ¢lectron
number density {n®), ., is accumulated by averaging the
electron densities calculated at each electron timestep over
this time interval. The ions are advanced in a predictor step
from N At; to (N -+ 1) dt, using the larger timestep 4¢; and
the electric field E, , | in a conventional way [2, 3]. A gyro-
averaged ion number density A, , is accumulated at
(N +1) A¢;. The revised semi-implicit gyrokinetic Poisson
equation is solved following the ion advance,
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FIG. 3. Interleaving of advancing ions and electrons and solving for
he self-consistent electric field in the revised orbit-averaged algorithm.
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where ¥, is the semi-implicit susceptibility tensor and is
defined in the following.

The susceptibility is derived by relating the linearized
drift-kinetic electron response to the electric field. For a slab
configuration with B=B,2+ B, ¥, |B,/B;| <1, and equi-
librium density gradient in the x direction, both the paraliel
electron response and the perpendicular E x B drift lead
to charge density perturbations. Hence, Eq.(3) in the
drift-kinetic limit for the elecirons becomes

10

2?2LA71_6—}’) (Byi1— )

=dne(fily, , — {1 Oner) (4)

The two semi-implicit terms contribute to relaxing the
w, Af, stability constraint and to compensating for the lack
of centering in the electron charge density response which
impacts the temporal accuracy. The validity criterion for the
linearization leading to the semi-implicit susceptibility is
obtained from the straightforward extension of the corre-
sponding condition derived for the direct implicit method
[4,8] to a magnetized plasma, |k} (e/m,) $ 4t7] <1. This
condition is a statement that the parailel displacement
preduced by the acceleration due to the electric field during
a timesiep must be smaller than a relevant wavelength to be
resolved. This is a timestep constraint on the integration of
the electron trajectory that must be satisfied whether or not
the integration scheme is implicit and does not limit the
nonlinearity of the ¢lectron response,

The ions are advanced in a corrector step from N 4t; to
(N+1)dr,using B, = Vg, and E, as described in
[2,3]. The corrected ion positions {x),,,} are used to
accumulate 7', ,, and Eq. (4) is solved to determine the
corrected value of ¢, , from which E,,,=—-Vg,. .
Next the electron trajectories from (N +1/2) 41, to
{N + 3/2) 41, are recomputed in a corrector step again using
a small timestep At,. The electrons are advanced with an
electric field E= C,E,, | + (1 — C,) E, for this corrector
step. This completes the computational cycle.

The highest frequency normal mode supported by these
equations in a cold uniform plasma has the frequency w,
defined in Section 1. The linear dispersion relation including
At effects is obtained straightforwardly using the methods of
Refs. [1, 2, 5,6]. For the w, mode, the parallel eleciron
response dominates the right side of Eq.(4); and
(w2/2]) V] g~ (w},/Q]) V2 > V7 for a cold, high-density
plasma. For a small-amplitude, lincar charge density
perturbation, the right side of Eq. (4) becomes
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4719(’7;'“ — LNy yp1)xdneV [:”0 Z xflj/(N* + 1}]

i=0

At,
=4R€V” l:ﬂo( ||N+1/2+ 2 TIN+1/2

(o) % )]

where N, = At,/4¢, (we assume that N, » 1). Note that
Eq. (5) corrects a typographical error in Eq. {7) of [6].
The linearized ¢lectron trajectory can be reduced to

(3)

4t

e e _Ttire €
XiN+32 a2 ™ 5 (U||N+1/2+U||N+3/2] (6a)

(6b)

€ e e *
Uinsyr " ina2 = —m_;miEn ;
where E*=E, on the predictor advance and E*=
CoEy, + (1 =Cy) E, on the corrector advance; ¢, 18
related by Egs. (4) and (5) 1o x§) 5, 115, U\ n4 100 @DA dy.
Using the corrector version of Eqgs. (6a) and (6b), we can
relate the linearized values of x and »j, directly to Ey
and E| ,,,. We then introduce the amplification factor
A=cxp(—iw At;) and Fourier transform the spatial
dependence to obtain

e A e 2P0+, (1-C
B (Gi—1y |7°

2 m,
) e A Cy)
Upz:—Af ()Fl)[co (—jo']lknﬁé

where %¢, 5, and ¢ are Fourier amplitudes. Equations (4)
and (5) are also Fourier analyzed to remove the spatial
dependence, and we substitute £, = — ik, and % and
from Eqgs. (7a) and (7b) to obtain the dispersion relation

°)] ik, ¢ (7a)

(7b)

AA—1P+a(A2+4i+ 1)(Col+1-Co)=0, (8)
where o = 0} 417 /6.

There are three roots of Eq. (8) in general. For a®» 1,
there is one root A = (Cy — 1)/C, that is stable for C, > $ and
two unstable roots A= —24./3. For C;=1 there is one
stable root A =0 and two additional roots that are stable if
<2, ie, w?dt?<12. The general solution of Eq. (8)

indicates that there is at least one unstabie root for Cy< 1

or wid?>12. As C, is increased above C,=1, the
instability threshold on the timestep decreases below
w; At: = 12. Sampie solutions for |4} as a function of « are
plotted in Fig. 4. We conclude that the revised semi-implicit
orbit-averaged algorithm relaxes the timestep constraint
from w] 417 < O(1) to wj At} < 12. We note that in contrast
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FIG. 4. The modulus of the amplification factor |4} as a function of
w} 4126 for Cy=10.8 and 1.02 in the revised algorithm.

to the direct-implicit algorithm [47], wherein the timestep
constraint set by the stability of the highest frequency mode
is completely relaxed, the timestep constraint for this semi-
implicit orbit-averaged algorithm is only partially relaxed.
Of course, there are residual timestep constraints on any
algorithm set by accuracy considerations in calculating the
particle trajectories and the dielectric response [8], e.g,
k -v 4t < 1, so that an arbitrarily large timestep could never
be used in practice. In Sections 3 and 4, we will describe how
the w}; 412 <12 constraint for the revised algorithm must
compete with other timestep constraints that are sensitive to
the specific physics application.

Our impiementation of the semi-implicit orbit-averaged
algorithm includes spatial filtering and spatial grid effects
arising from the interpolations of the electric field force from
the grid to the particles and the electron charge density from
the particles to the grid. These aiter the algorithm and the
linear dispersion analysis in the same fashion as for the
direct-implicit method [8, 9]. The spatial smoothing fac-
tors, e.g., a k-space filter like exp{ — k?a?), and the interpola-
tion factors that arise in 7'y, , — {n°)> 5., on the right side
of Egs. (3) and (4) should be matched by the same factors
in the semi-implicit susceptibility. This is straightforward
and we refer to [9] for explicit formulae. The dominant
effect is a reduction of the effective value of w} as (k 4x/2)*
or k*a® increases. As a consequence, the instability
threshold on @} At} becomes wavenumber dependent. Of
course, thermal effects introduce additional dispersion;
but this is physical. The Gaussian k-space filter can be
suppressed by setting the smoothing factor a=0. There
is nothing in the dispersion analysis to indicate that this
cannot be done, but we have not tried it. Having a tunable
spatial filter has been useful in our experience with other
particle codes, and we will make use of it here.

Before concluding this section, we comment on accuracy
considerations associated with the semi-implicit suscep-
tibility. A criterion for whether low-frequency and long
wavelength modes of physical interest are being distorted
can be derived from lingar theory. The criterion derives from
constraining the implicit susceptibility to be smaller than
the linear electron susceptibility for the physical modes of
interest. For example, consider the linear clectron suscep-
tibility for adiabatic electrons, y,=1/k*42. The semi-
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implicit susceptibility produces a small modification if
Cokjjw?, At < 1fA2, which is equivalent to Cokfjv2 At} <1
and similar to the stricter srability condition Eq. (41) in
Rel [6] invelving the largest wavenumber retained.
Because the modes of interest must satisfy k7 Ax}, <1 for
good resolution, this constraint does not preclude 4z, < 41,
With a sufficiently small 4¢,, the longest, most important
parallel wavelength modes will suffer an acceptably small
distortion of the dielectric response because of the semi-
implicit susceptibility.

3. SIMULATION TEST CASES

The performance of the two-dimensional implementation
of the revised semi-implicit orbit-averaged algorithm has
been assessed in two types of test cases so far. The first test
case was the unstable I'TG mode investigated earlier in [7].
The second set of test cases was for a plasma that was stable
to the ITG mode.

3.1. lon-Temperature-Gradient Instability

In Figs. 5, 6, and 7, we show resuits from gyrokinetic
simulations of an n,=4 ITG instability, where 5=
(dln T, /dx)/(dIn n;fdx). Simulation results from an
explicit, electron subcycled gyrokinetic code are presented
in Fig. 5. The semi-implicit orbit-averaged algorithm was
used to produce the results shown in Figs. 6 and 7. With
electron subcycling [10], Poisson’s equation and the
electron equations of motion are solved together at each
electron timestep 4¢,. The ions are advanced using a
time-averaged electric field and a larger timestep that is an
integer multiple of the electron timestep. The subcycling
choreography and the stability properties differ slightly
depending on whether the ratio of the ion timestep to the
electron tumestep is odd or even; odd is preferred [ 10]. The
value of the subcycling parameter was N, = At,/4z, = 3 for
the simulation results shown in Figs. 5, 6, and 7. Because the
ion gyrokinetic particle advance involves a much more com-
plicated calculation than the electron drift-kinetic advance
(the ion calculation is ~5 times more time consuming),
there is a great benefit in computational efficiency from
electron subcycling it if is compatible with accuracy and
stability considerations.

A 16 x 16 grid was employed in all of the ITG test cases,
T.=T, B,/B,=001, no magnetic shear, and dx=p,,
where g, = (T,/m,}/*/82, is the thermal ion Larmor radius.
In addition, Lee’s multiscale treatment of the ion tem-
perature and density gradients was used [3]. There were 64
electrons and ions per cell used in the simulations shown in
Figs. 5 and 6. There were 32 electrons and 64 ions per cell
used in the orbit-averaged simulation whose results are dis-
played in Fig. 7. From linear theory, the complex frequency
for the (k. k,)=(1, —1) (in units of 2x/L) mode is
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FIG. 5. Simulation results from an explicit subcycled simulation of the
n;=4 instability in an unsheared magnetic field. The ion thermal flux has
been summed over all the jons and normalized to the product of the num-
ber of ions times the ion temperature and the ion sound speed. The ion
kinetic energy is the sum of all the ion kinetic energies in code units, and
the field energy is the sum of the electric field and the ion polarization
dielectric energy densities integrated over the volume in the same units as
the ion kinetic energy. It is the nature of the 1TG instability that the ion
parallel kinetic energy is depleted at the expense of exciting the ITG modes
to finite amplitudes. The real and imaginary paris and the magnitude of the
Fourier amplitude of led/T | for the (k,, k)= (1, —1) mode are also
plotted as a function of time.

w/Q,;=0.007 + 0.005{ [7]. The unit charge per electron was
twice that of the ions for the case with half as many electrons
as ions. Further significant reduction of the number of
orbit-averaged electrons relative to the number of ions did
not lead to results with acceptable accuracy for the n,=4
test case.

We note that there is reasonably good agreement between
the simulation results shown in Figs. 5, 6, and 7. There is a
significant degree of nonlinearity in the #,=4 test case
which influences the observed results and the best choice of
simulation parameters. The mode frequency observed is
significantly shifted by nonlinear effects from its linear value
[71, and the maximum ion and electron velocities (derived
from the E x B velocity} are large enough to limit the choice
of timesteps. In fact, we noted that there was sometimes a
tendency for a strongly peaked potential structure to form
which was accompanied by a strong velocity vortex for both
species. Once a strong velocity voriex formed, smaller
timesteps were needed in both the explicit and semi-implicit
simulations to ensure that v 41 < Ax for both species. To the
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extent that finite-amplitude effects narrow the disparity
between the electron and ion velocities, so that the ions are
not much slower than the electrons, the improvement in
efficiency to be gained from subcycling and orbit averaging
diminishes. This unstable 4, =4 example establishes that
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iens.
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the revised semi-implicit algorithm can obtain results that
are in satisfactory agreement with those of a published
benchmark, but no improvement in computational
efficiency was achiecved in this particular case because of
finite-amplitude effects.

3.2, Simulation of a Warm, Quiescent Plasma

The second test case set confirms some of the stability
characteristics of the revised semi-implicit algorithm and
demonstrates that a gain in computational efficiency can be
obtained. In Fig. & we present simultion results for |eg/Te|
for the (k,, k)= (1, —1) mode as a function of time from
three simulations with y;, =1, T,=T,, p,= 4x, 16 x 16 grid,
a smoothing factor exp(—k’a®) with a=1, and different
choices of Cy, N, and w,, 4¢;. In all three simulations there
were 256 ions and 64 electrons per cell. In Fig, 8a, C; = 1.04,
N,=16, and w, 4¢;=1.86; and the simulation is numeri-
cally stable. The simulation results in Fig. 8b reveal
a numerical instability for Cy;=05 N_=16, and
w,, 4t;=1.86; and in Fig. 8¢ for C,=1.04, N =064, and
w,, At,=T7.4. These results are consistent with the stability
boundaries determined in Section 2.2.

We show results from simulations with no gradients in
Fig.9, T.=T;, p,=4dx, 16x16 grid, 256 ions per cell,
smoothing factor @ = 1.7, and various choices for ¥, and
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FIG. 8. Plots of |ed/T,| for the (k, k,)= (1, — 1) Fourier mode from
semi-implicit orbit-averaged simulations of a warm quiescent plasma for
(a) Cy=1.04 and w, 4;,=1.86, (b) Cy=05 and w, 4t,=186, and
{e) Cy=1.04 and w, A1,=74,
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FIG. 9. Simulation results for the normalized, time-filtered ion
thermal flux @, in x and |eg/T,| for the {k,, k,)= (1, —1) Fourier mode
as functions of time for a warm quicscent piasma. (a) 256 electrons per cell,
N_=3, and the explicit subcycled algorithm. (b} 256 electrons per cell,
N, =25, and the semi-implicit orbit-averaged algorithm. {c} 64 electrons
per cell, N¢ =16, and the semi-implicit orbit-averaged algorithm. (d) 64
electrons per cell, ¥ _ = 50, and the semi-implicit orbit-averaged algorithm.
The dashed curves on the |eg¢/T,| plots are time averages.

the number of electrons per cell. These simulations of
thermal noise are intended to show the influence of orbit
averaging on important observables, such as the electric
potential mode amplitudes and the ion thermal flux, and to
address the questions of whether the orbit averaging reduces
the noise and allows a reduction of the number of electrons.
The results from one frame to the next should #ot be identi-
cal. We present results for |eg/T, | for the (k, k)= (1, —1)
mode and the spatially averaged ion thermal flux in the x
direction normalized to the mean ion thermal energy times
the sound speed as functions of time in Fig. 9. The devia-
tions of the thermal flux from zero are due purely to statisti-
cal noise and thermal fluctuations. Both ions and electrons
contribute to the statistical noise. The orbit averaging of the
electrons can reduce only the electron contribution to the
noise. For equal numbers of ions and electrons, increasing
N reduces the electron contribution to the statistical noise;



SEMI-IMPLICIT PARTICLE CODE

T T T T
10 |
2
® 8f .
8
- |
§ 6 N, =N,
3 I
-]
E 4F 7
- whAti =1
/ Ng = Ny4
2 A L e—— 1
10 20 30 40 50
N, = At/At,

FIG, 10. Code timings (per particle per clectron timestep) for
semi-implicit orbit-averaged simulations of a warm quiescent plasma as a
function of the subcycling parameter N = At,/4t, for equivalent numbers
of ions and electrons, and the effective code timing for one-fourth the
number of electrons in a simulation that obtained similar physical results.

but the ion contribution to the noise should persist (Fig. 9).
With N, > 1, we were abie to reduce the number of elec-
trons significantly, e.g., from 256 to 64 per cell, while leaving
the average thermal fluctuation levels in the same range
{Figs. 9c and d). Furthermore, a numerically stable simula-
tion was performed with w, Ar;=58 and N, =350 for a
smoothing factor a=1.7.

Code timings on a single processor Cray 2 for the
semi-implicit orbit-averaged algorithm with fully vectorized
scatter [11] for the charge density accumulation are
disptayed in Fig. 10. The timings were calculated by
dividing the processing time per electron timestep by
the total number of particles (2N,) for equal numbers of
electrons and jons. The electron timestep is used so that a
reference simulation with equal electron and ion timesteps
and equal numbers of particles can be used, against which
the code efficiency improvements due to electron subeycling
and orbit-averaging can be measured. The reduction in
code timing with increasing N, is a result of the clectron
subcycling; i.e., we are not advancing the ions as often. The
orbit averaging leads to an additional improvement in the
total cost of the simuiation by allowing the reduction of
the number of electrons if N, 3 1 while maintaining an
acceptable statistical noise level. The timing for advancing
an individual electron or ion over its respective timestep
remains the same. Thus, we have obtained an order of
magnitude improvement in the code timing for a simulation
of 2 warm quiescent plasma through the use of the semi-
implicit orbit-averaged aigorithm.

4. CONCLUDING REMARKS

In this paper, we have reported our experience in
implementing a semi-implicit orbit-averaged gyrokinetic
particie simulation algorithm. We found that our first algo-
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rithm introduced earlier in [2] was subject to a temporally
growing error. This motivated the revised algorithm intro-
duced and analyzed in Section 2. Simulation experience
with the revised algorithm was reported in Section 3. The
results of the simuiation with the revised algorithm are in
substantial agreement with the published results [7] and
with those from a simulation with an explicit time-integra-
tion algorithm for the #,=4 ITG instability. The simulation
results reported in Section 3 also demonstrate good electron
noise-reduction characteristics and a significant improve-
ment in the code timings for orbit-averaged simulation of 2
warm quiescent plasma.

The algorithm implementation described here is
restricted to the case of a possibly tilted magnetic field with
no shear. Some comments on the possible extension of this
algorithm to allow for magnetic shear are given in the
Appendix. This work should be considered as a stepping
stone in the development of more powerful particle
simulation methods.

An important himitation on the applicability of the
semi-implicit orbit-averaged gyrokinetic algorithm was dis-
covered in the course of our work. The limitation derives
from timestep constraints set by the physics of the applica-
tions. When the dominant timestep constraints are set by
accuracy restrictions determined by equilibrium conditions
(e.g., particle Courant conditions set by thermal velocities
for the ions and electrons, v, 47, <Ax and v, 4¢, < Adx,
where dx =4x/0, vi,=T,./m;,, and 6=B /B, (<)),
then there is a large disparity in timescales: A¢,/At, =
O(m /m, ) for T;/T,= O(1). The orbit-averaged algorithm
is designed to take advantage of this disparity to achieve an
improvement in computational efficiency. Note that
because we are specifically interested in physical cir-
cumstances for which ion Landau resonance might be
important, viz., w/k, v,= O(1}, the timesteps for the evolu-
tion of the fields and the ion advance have been taken to be
equal. If most of the electrons are moving much faster than
the ions, we need to use a smaller timestep to accurately
resolve their trajectories, but we can average their contribu-
tions to the charge and current densitics in Maxwell’s equa-
tions to reduce the computational costs. However, the
simulation timesteps cannot be chosen without regard to
finite-amplitude considerations. In particular, in the
gyrokinetic simulation model the electron E x B velocity V¢
and the ion gyro-averaged E x B velocity ¥, must satisfy
Vedt,<Ax and Vi, A, < Ax. In general, V< V,, but for
k, p;<1, Vgand Vcould be comparabie; and there would
be little disparity between the perturbed electron and ion
drift velocities. This circumstance presents an impediment
to the use of orbit averaging. For example, if (Vg/v,)>
(Ax/Ax,), then an ion timestep must be used to resolve the
perturbed drift motion accurately that is smaller than that
determined by resolving the equilibrium thermal streaming
parallei to the magnetic ficld.
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In the ,=4 ITG instability test case reported here, the
wave amplitudes and the perturbed drift motion that were
observed required the use of a relatively small timestep; and
the value of N = d¢,/41, was 1elatively small, viz., N, =3.
Relatively large electric potentials were observed:
leg/T,! <0.18. The simulation timesteps were constrained
by the Courant conditions on the peak velocity perturba-
tions, which satisfied V', Ar,/Ax =03 and V4 4¢;/4x=0.08
for At;/4t, =3, With these timesteps, the Courant condi-
tions for the thermal velocities were casily satisfied,
Bv, A4t,/Ax =006 and Ov, 41,/4x=0.004 for 8=001. It
should be noted that the simulations with the explicit and
semi-implicit algorithms were both subject to these Courant
conditions.

Simulations of the ITG instability modeling larger
systems with weaker gradients than those used in our
examples might be expected to saturate at smaller wave
amplitudes and with weaker perturbed drifts on the basis of
free-energy or mixing-length arguments [7]. Mixing-iength
arguments lead to estimates for the perturbed electric poten-
tial at saturation e¢/T,~ 1/kL, or 1/kL,, where k is the
wavenumber appropriate to the fastest growing modes or
the modes dominating the fluctuation spectrum. These
arguments have been found useful in providing estimates,
sometimes upper bounds, for fluid and particle simulations
of turbulent transport. Because we know of no better a
priori estimate of the saturated turbulence, we use the
mixing-length estimate to express V /v, = ck¢/Bv, ~ p /L.,
where p, is the thermal electron Larmor radius. Thus, V /v,
is proportional to L !; systems with weaker gradients
might be more compatible with the use of large values of 4¢,
and ¥, in an orbit-averaged algorithm. In general, physics
applications in which finite-amplitude effects are relatively
weaker so that equilibrium-determined constraints are
dominant and in which there is a large disparity between the
ion timescales and the faster electron timescales will provide
more fruitful opportunities for the use of the semi-implicit
orbit-averaged algorithm.

APPENDIX: EXTENSION OF THE ALGORITHM
TO INCLUDE MAGNETIC SHEAR

The algorithms described in the text of this paper were
restricted to having a tilted, unsheared magnetic field. A
more relevant model of the magnetic field for physical
applications is one in which there is magnetic shear,
B, = By(x —x,)/L,, where L, is the magnetic shear length.
The methodology of the particle pushing and charge
accumulation remains unchanged from the algorithm
described in the text, but the solution of the field equation
must be revised for magnetic shear. In the presence of
magnetic shear, the explicit dependence of V, on x, V, =
(8/6z) + (x — x4) L '(6/8y), frustrates the use of Fourier
transforms in x to solve the semi-implicit Poisson equation,
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Eq. (4). Here we suggest a method for solving Eq. (4} when
there is magnetic shear.

If one cannot Fourier transform in x, then the evaluation
of —(w,/Q7) Vig=4i7?[1-Iexp(~b)]), where i,=
v,/w,, cannot be performed in k space. Research on
gyrofluid models [12] has demonstrated the utility of the
Padé approximation, /yexp( —b)x (1 +4?) 'for0< b <9,
For simplicity we drop the vacuum polarization term VZ in
Eq. (3) (which is typically small), use the Padé approxima-
tion for 7,exp(~5b), and apply the operator i3 (1 +5)=
A2(1 - 5,V3 ) to both sides of Eq. (3) to obtain

{_ﬁivi'l'_’]"%(] _ﬁfvi)v‘ [Coxf‘V]} $N+1
— 2 (1=pVI)S, (AD)

where S = dme{ity, , — (1" Dy, 1) = V-[Cox. - V1, which
has explicit dependence on x through V,, (see Eq. (4)). The
expression in the curly bracket on the left side of Eq. {Al)is
an elliptic operator whose finite-difference representation in
x leads to a matrix that is sparse and banded. Fourler trans-
forms can still be used to evaluate y and z derivatives in k
space, We expect that the solution of the resulting sparse-
matrix equation will be amenable to one of the many
methods that exist for such equations, but we have made no
attempt to implement this algorithm extension as yet.
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